PERMUTATIONS AND COMBINATIONS

Module-10

QUESTIONS

Q6) In how many ways can a committee of 5 persons with a chairperson be selected from 12 persons?
No. of ways of selecting a chairperson from 12 persons $={ }^{12} \mathrm{C}_{1}$ ways.

And the remaining 4 persons can be selected from the remaining 11 in ${ }^{11} \mathrm{C}_{4}$ ways.
\therefore Total no. of ways $={ }^{12} c_{1} \times{ }^{11} c_{4}$ And $\Rightarrow x$

$$
=12 \times \frac{11 \times 10 \times 9 \times 8}{4 \times 3 \times 2 \times 1}
$$

$=12 \times 330=3960$.

Q7) Out of 12 points in a plane, no three are in the same line except five points which are collinear. Find the no. of lines that can be formed.

No. of lines formed from 12 points taking 2 at a time ${ }^{12} C_{2}$
No. of ${ }_{5}^{\text {linas }}$ formed from 5 points taking 2 at a time $={ }^{5} \mathrm{C}_{2}$

But 5 collinear points, when joined pairwise,
results in only one line.
Required no. of straight lines $={ }^{12} C_{2}-{ }^{5} C_{2}+1$

QUESTIONS.....

Q 8). If ${ }^{n} C_{r-1}=36^{n} C_{r}=84$ and ${ }^{n} C_{r+1}=126$, then find the value of ${ }^{\mathrm{C}} \mathrm{C}_{2}$.

Sol. We know that $\frac{{ }^{n} C_{r}}{{ }^{n} C_{r-1}}=\frac{n-r+1}{r}$

$$
\begin{array}{ccc}
& \therefore & \frac{n-r+1}{r}=\frac{84}{36} \text { (given) } \\
& \Rightarrow \quad \frac{n-r+1}{r}=\frac{7}{3} \quad \Rightarrow 3 n-3 r+3=7 r \\
& \Rightarrow \quad & \frac{10 r-3 n}{}=3 \quad----- \text { (i) } \\
& & \frac{{ }^{n} C_{r+1} C_{r}}{r}=\frac{n-(r+1)+1}{r+1}=\frac{126}{84} \quad \text { (given) } \\
\therefore & & \frac{n-r}{r+1}=\frac{3}{2} \quad \Rightarrow 2 n-2 r=3 r+3 \\
\Rightarrow & & 2 n-5 r=3 \quad------ \text { (ii) }
\end{array}
$$

Solving (i) and (ii), we get $n=9$ and $r=3$.

$$
\therefore \quad{ }^{r} C_{2}={ }^{3} C_{2}=3
$$

Q9) Find the no. of ways in which we can choose a committee from four men and six women, so that the committee includes at least two men and exactly twice as many women as men

At least 2 2 and more

Men	Women
2	4
3	6

Required no. of committee formed
$={ }^{4} C_{2} \times{ }^{6} C_{4}+{ }^{4} C_{3} \times{ }^{6} C_{6}$
$=\frac{4 \times 3}{2} \times \frac{6 \times 5}{2}+4 \times 1$
$=6 \times 15+4=94$

QUESTIONS.....

Q 10) In how many ways can we get exactly 4 hearts or exactly 3 spades in a draw of 6 cards?

\therefore No. of ways of drawing exactly 4 hearts or 3 hearts

Determine whether each situation involves permutations or combinations........

MISCELLANEOUS QUESTIONS

Q1) How many words with or without meaning can be formed using all the letters of the word 'EQUATION' at a time so that the vowels and consonants occur together?

Vowels arranged $\longrightarrow 5$! ways
Consonants arranged $\longrightarrow 3$! ways
The 2 groups of vowels and consonants are arranged in 2 ! ways.
\therefore Total no. of words $=5!\times 3!\times 2!$

$$
=120 \times 6 \times 2=1440
$$

Q2) It is required to seat 5 men and 4 women in a row so that the women occupy even places. How many such arrangements are possible?

> Arrangement of men $\longrightarrow 5!$ ways Arrangement of women $\xrightarrow{\longrightarrow}$! ways
\therefore Required no. of arrangements

$$
=5!\times 4!=120 \times 24=2880
$$

QUESTIONS......

Q3) How many words with or without meaning each of 2 vowels and 3 consonants can be formed from the letters of the word 'DAUGHTER' ?

The word DAUGHTER has

Vowels	Consonants
A, U, E	D, G, H, T, R
any 2	any 3

Selecting 2 vowels $\longrightarrow{ }^{3} C_{2}$ ways
Selecting 3 consonants $\Longrightarrow{ }^{5} C_{3}$ ways
No. of words formed
$\left.={ }^{3} \mathrm{C}_{2} \times{ }^{5} \mathrm{C}_{3} \times 5!\right\} \begin{aligned} & \text { selected } 5 \\ & \text { letters are } \\ & \text { arranged }\end{aligned}$
$=3 \times \frac{5 \times 4}{2 \times 1} \times 120=3600$.

Q4) In how many ways can the letters of the word 'ASSASSINATION' be arranged so that all the S's are together?

Here,
A $\rightarrow 3$ times
I $\Rightarrow 2$ times
$\mathrm{N} \rightarrow 2$ times
Required no. of words
$=\frac{10!}{3!2!2!}=1,51,200$.

QUESTIONS

Q5) A committee of 12 is to be formed from 9 women and 8 men. In how many ways can this be done if at least five women have to be included in a committee? In how many of these committees, (i) the women are in majority? (ii) the men are in majority?

Women	Men	No. of ways
5	7	${ }^{9}{ }^{9} \mathrm{C}_{5} \times{ }^{8} \mathrm{C}_{7}$
6	6	${ }^{9}{ }^{5} \mathrm{C}_{6} \times{ }^{8} \mathrm{C}_{6}$
7	5	${ }^{9}{ }^{9} \mathrm{C}_{7} \times{ }^{8} \mathrm{C}_{5}$
8	4	${ }^{9}{ }^{9} \mathrm{C}_{8} \times{ }^{8} \mathrm{C}_{4}$
9	3	${ }_{8}{ }^{9} \mathrm{C}_{9} \times{ }^{8} \mathrm{C}_{3}$

No. of committees with at least 5 women $=\left({ }^{9} \mathrm{C}_{5} \times{ }^{8} \mathrm{C}_{7}\right)+\left({ }^{9} \mathrm{C}_{6} \times{ }^{8} \mathrm{C}_{6}\right)+\left({ }^{9} \mathrm{C}_{7} \times{ }^{8} \mathrm{C}_{5}\right)+$ $\left({ }^{9} \mathrm{C}_{8} \times{ }^{8} \mathrm{C}_{4}\right)+\left({ }^{9} \mathrm{C}_{9} \times{ }^{8} \mathrm{C}_{3}\right)$
$=1008+2352+2016+630+56=6062$
(i) No. of committees where women are in majority $=2016+630+56=2702$
(ii) No. of committees where men are in majority = 1008

QUESTIONS

Q6) Find the number of words which can be formed out of the letters of the word 'ARTICLE', so that the vowels occupy even places.

Vowels arranged $\longrightarrow 3!$ ways
Consonants arranged $\Longrightarrow 4$! ways
\therefore Total no. of words $=3!\times 4!$

$$
=6 \times 24=144
$$

Q7) Find the number of different 8 - letter words formed from the letters of the word 'EQUATION', if each word is to start with a vowel.

Vowels as the first letter $\longrightarrow 5$ ways
Remaining 7 places $\Rightarrow 7$! ways
No. of 8 - letter words formed
$=5 \times 7!=5 \times 5040=25,200$.

HOMEWORK QUESTIONS.....

Q1) The English alphabet has 5 vowels and 21 consonants. How many words with 2 different vowels and 2 different consonants can be formed from the alphabets?

Q2) There are 10 points in a plane of which 4 are collinear. Find the number of straight lines obtained by joining any two of them.

Q3) Out of 8 men and 4 ladies, a committee of 5 is to be formed. In how many ways can this be done so as to include at least one lady?

Q4) How many words, each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?

Q5) Find the number of ways in which the letters of the word 'ARRANGE' be arranged such that both R do not come together.

ANSWERS:
Q1) 50400 Q2) $40 \quad$ Q3) $736 \quad$ Q4) $2880 \quad$ Q5) 900

